Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2002): 20230905, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403499

RESUMO

Prion and prion-like molecules are a type of self-replicating aggregate protein that have been implicated in a variety of neurodegenerative diseases. Over recent decades, the molecular dynamics of prions have been characterized both empirically and through mathematical models, providing insights into the epidemiology of prion diseases and the impact of prions on the evolution of cellular processes. At the same time, a variety of evidence indicates that prions are themselves capable of a form of evolution, in which changes to their structure that impact their rate of growth or fragmentation are replicated, making such changes subject to natural selection. Here we study the role of such selection in shaping the characteristics of prions under the nucleated polymerization model (NPM). We show that fragmentation rates evolve to an evolutionary stable value which balances rapid reproduction of PrPSc aggregates with the need to produce stable polymers. We further show that this evolved fragmentation rate differs in general from the rate that optimizes transmission between cells. We find that under the NPM, prions that are both evolutionary stable and optimized for transmission have a characteristic length of three times the critical length below which they become unstable. Finally, we study the dynamics of inter-cellular competition between strains, and show that the eco-evolutionary trade-off between intra- and inter-cellular competition favours coexistence.


Assuntos
Príons , Príons/química , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA